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Abstract The equilibrium shape and dihedral angles at

the solid–liquid–vapor tri-junctions of two-phase alloy

small particles containing a cusp-oriented interface were

modeled as a function of phase fraction, surface energy and

the interfacial energy. The calculation was applied to dif-

ferent combinations of surface and/or interfacial energies

to demonstrate the various possible particle shapes and

dihedral angles that result for two-phase particles. The

dihedral angles at the tri-junction vary with the phase

fraction, due to the coupling between the relative amounts

of each phase, interfacial energy relative to the two surface

energies and the equilibrium conditions at the tri-junction.

These features can be used to find the ratio of the interfa-

cial energy to the surface energies of two-phase particles

for any state of matter.

Introduction

It is well known that the balance between the surface and

interfacial energy densities determines the resulting equi-

librium dihedral angles at a three-phase junction (or tri-

junction) [1–5]. This situation was illustrated in our

previous paper [6]. These calculations are commonly used

in the evaluation of wetting experiments [3–5]. In practice,

the dihedral angles at a tri-junction are measured experi-

mentally and then used to determine the grain boundary or

interfacial energy, given known values for the surface

energies of the phases. The dihedral angles need not be

uniquely determined when one of the interfaces is cusp-

oriented. Hoffman and Cahn [7, 8] showed that the force

balance leading to the conditions for thermodynamic

equilibrium applicable to a three-phase junction composed

of anisotropic interfaces can be replaced by an inequality

which eliminates one of the constraints on the dihedral

angles. As a result, it should be possible for an equilibrium

three-phase junction in which one interface is cusp-

oriented to exhibit a range of dihedral angles. This situation

has been discussed in detail recently with respect to grain

boundaries [9].

In recent transmission electron microscope (TEM)

investigations of two-phase Ag–Cu alloy nanoparticles [6],

we observed large variations in the particle shapes and

corresponding three-phase junction angles that appeared

consistent with the surface/interfacial-energy balance pre-

dictions of Hoffman and Cahn [7]. In particular, the

observed dihedral angles appeared to depend on the rela-

tive phase-fractions of the Cu-rich and Ag-rich phases.

Similar variations of the dihedral angle on phase fraction

have been recently reported for GaAs–GaSb nano ice-

cream cones [10].

In this article, we present a simple, but powerful ana-

lytical calculation which shows that the balance among the

surface and interfacial energy densities at the cusp-oriented

interface between the two phases and the resulting dihedral

angles depend on the relative phase fractions of the solid

phases. This result has particularly important implications

in nanostructured materials, where phase volumes are small
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and particles are often able to obtain their equilibrium

shape. It also presents a new method to determine the

relative values of the surface and interfacial energy den-

sities in two-phase systems, based on the variation of the

dihedral angles at the three-phase junction with phase

fraction.

Computational model

In this section, the equations specifying the equilibrium

shape of a two-phase solid–liquid small particle in contact

with its vapor and the corresponding boundary conditions

for the equilibrium angles at the tri-junction containing an

interface with a fixed orientation are obtained as a function

of the relative amounts of each phase using variational

calculus.

The solid–vapor and liquid–vapor surface energy den-

sities (cSV and cLV) are assumed to be isotropic while the

solid-liquid interface is assumed to be cusp-oriented with

interfacial energy density cLS. Interfacial and surface-

stress effects are neglected and the composition fields

within each phase are assumed homogeneous. These

conditions imply that the phase compositions are inde-

pendent of particle size and alloy composition, and that the

effect of segregation on the surface and interfacial energies

is ignored. The equilibrium shape of the two-phase particle

is that which minimizes the sum of the surface and

interfacial energies for a given phase fraction of the two

solid phases. It is assumed that the experimental system is

sufficiently small that global equilibrium has been

obtained.

Initially, a two-dimensional L–S–V. system is consid-

ered, as depicted in Fig. 1. The L–S. interface is

constrained to lie along the y-axis. The x-axis is taken to be

a mirror plane. With the assumption of global equilibrium,

the morphology of each phase depends on the amounts of

each phase present.

Calculation of total energy

Let EL and ES be the energies of the L and S phases,

respectively, and ELS be the energy of the interface

between the S and L phases. SL and SS are the surface areas

of the L and S phases and SLS is the interfacial area. cL and

cS are the surface energies of the L and S phases and cLS is

the interfacial energy. hL, hS and hV are the dihedral angles,

as illustrated in Fig. 1. Using these notations, the total

energy of the system can be written as: E = EL + ES +

ELS, where EL = cLSL, and similarly for the other energies.

To find SL, the situation depicted in Fig. 1, of two

truncated unequaled-size spheres in contact with each

other, has to be considered. If AL and AS represent the

surface areas formed by revolution of a curve y = f(x)

about the x axis of the L and S phases, then the following

two constraints apply [11]:

SL ¼
Z

XL

0

2pyðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

dx; ð1Þ

yðxÞ ¼ ½R2
L � ðRL � xÞ2�1=2; ð2Þ

where RL is the radius of the truncated phase L.

Accordingly, SL can be written as:

SL ¼ 2pRL

Z XL

0

dx ¼ 2pRLXL: ð3Þ

Similarly, SS can be written as:

SS ¼ 2pRSXS: ð4Þ

Then the total energy of the system can be written as:

E ¼ 2pRLXLcL þ 2pRSXScS þ pcLSð2RLXL � X2
LÞ: ð5Þ

Volume of truncated sphere-like particles

The volume of the L sphere is given by [11]:

VL ¼
Z XL

0

py2ðxÞdx ¼ pX2
L RL �

XL

3

� �
: ð6Þ

Likewise, the volume of the S sphere is given by:

Fig. 1 Cross-section of an equilibrium two-phase particle represent-

ing the solid L, S, and vapor V phases. The LS interface is cusp-

oriented and constrained to lie along the y-axis
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VS ¼ pX2
S RS �

XS

3

� �
: ð7Þ

RL and RS are estimated from Eqs. 6 and 7 to give the

constraints:

RL ¼
VL

pX2
L

þ XL

3
ð8Þ

RS ¼
VS

pX2
S

þ XS

3
: ð9Þ

Problem statement

The total energy E must be minimized subjected to the

constraints in Eqs. 8 and 9 to give:

E ¼ 2pXLcL

VL

pX2
L

þ XL

3

� �
þ 2pXScS

VS

pX2
S

þ XS

3

� �

þ pXLcLS

2VL

pX2
L

þ 2XL

3
� XL

� �
: ð10Þ

Equation 10 is simplified to:

E ¼ 2VL

XL
ðcL þ cLSÞ þ

pX2
L

3
ð2cL � cLSÞ þ

2VScS

XS
þ 2p

3
X2

ScS:

ð11Þ

The constraints y(XL) = y(XS) using Eqs. 8 and 9 give:

2VL

XL
� p

3
X2

L �
2VS

XS
þ p

3
X2

S ¼ 0: ð12Þ

Accordingly, the extrema occur when:

XL ¼
3VL

p

� �1=3 ðcL þ cLS � kÞ1=3

ð2cL � cLS þ kÞ1=3
ð13Þ

and

Xs ¼
3VS

p

� �1=3 ðcS þ kÞ1=3

ð2cS � kÞ1=3
; ð14Þ

where k is the Lagrange multiplier. To find k, we use the

remaining constraint condition in Eq. 12 with Eqs. 13 and

14, yielding:

p
3

� �1=3

2V
2=3
L

2cL� cLSþk
cLþ cLS�k

� �1=3

�V
2=3
L

cLþ cLS�k
2cL� cLSþk

� �2=3
"

�2V
2=3
S

2cS�k
cSþk

� �1=3

þV
2=3
S

cSþk
2cS�k

� �2=3
#
¼ 0: ð15Þ

Letting VS

VL

� �2=3

¼ g, the phase fraction ratio, gives:

2
2cL � cLS þ k
cL þ cLS � k

� �1=3

� cL þ cLS � k
2cL � cLS þ k

� �2=3
"

�2g
2cS � k
cS þ k

� �1=3

þ g
cS þ k

2cS � k

� �2=3
#
¼ 0: ð16Þ

Equation 16 can be written in the form of Eq. 17 giving

a sextic polynomial in k:

cL � cLS þ kð Þ3 cS þ kð Þ 2cS � kð Þ2�g3 cS � kð Þ3

� cL þ cLS � kð Þ 2cL � cLS þ kð Þ2¼ 0: ð17Þ

A simple computer program utilizing the Newton-

Raphson method can be used to solve the above equation

for k, to find the roots to use in calculating both XL and XS,

and accordingly, RL and RS, respectively.

Special cases

i) If cL = cS = cLS = c, Eq. 17 becomes:

cþ kð Þ 2c� kð Þ k3 2c� kð Þ � g3 c� kð Þ3 cþ kð Þ
n o

¼ 0:

ð18Þ

Solutions including k = �c and k = 2c are not realistic, as

they imply VL = 0 or Vs = 0.

ii) If cL = cS and cLS= 0, then:

cþ kð Þ4 2c� kð Þ2�g3 c� kð Þ4 2cþ kð Þ2¼ 0: ð19Þ

It is easy to note that k = 0 is a solution for g = 1.

Dihedral angles

It is straightforward to find the dihedral angles at a tri-

junction from the calculations above. They are connected

to the surface and interfacial energies by the relation:

cLV cos hL þ cSV cos hS þ cLS ¼ 0: ð20Þ

Results

There are many different combinations of surface and/or

interfacial energies that can be used to demonstrate the

various possible particle shapes and dihedral angles that

result for two-phase particles. Here we present only a few

of the possibilities to illustrate typical behavior.
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Increasing the interfacial energy relative to the two

surface energies

Figures 2a–c show the effect of increasing the interfacial

energy on the equilibrium two-phase particle shape. The

equilibrium particle shape was calculated from Eq. 17 for

three different interfacial energies with the same value of

the phase fraction ratio, g, of 0.4. For purposes of illus-

tration, the figures were determined using the ratios of the

surface energies of a real two-phase solid–solid system

consisting of solid Co and Cu, i.e., 2550 and 1850 mJ/m2,

respectively [5]. In keeping with the notation of Fig. 1, we

will refer to the two solid phases as L and S. Figure 2(d)

shows the contact angles for this particle over the range of

varying interfacial energy from 400 to 3500 mJ/m2.

Figure 2a shows a situation where the L and S phases

have the surface energies above, but cLS. has its minimum

value of 400 mJ/m2. In this case, the particle is nearly

spherical because the lower interfacial energy allows the

particle to increase the relative proportion of interfacial

area. Notice that hV is about 180� for this case in Fig. 2d.

It is useful to compare Fig. 2c with Fig. 2a. One can see

that the particle in Fig. 2c adjusts its shape to compensate

the increase in cLS by shortening the length of the L–S

interface and thereby increasing hL considerably. Fig-

ures 2a–c clearly show that the degree of puckering at the

three-phase junction and hence, hV, strongly depends on

the interfacial energy, with low values of interfacial energy

leading to little puckering. This feature can be used to

estimate the relative magnitude of the interfacial energy

compared to the surface energies of the two phases.

As might be expected, it was observed that increasing the

interfacial energy relative to the two surface energies causes

the particle to decrease the area of the L–S interface,

thereby increasing the degree of puckering at the three-

phase junction. This leads to smaller values of hV and larger

values of hL and hS, as shown in Fig. 2d. These variations

can cause hV to lie above or below hL and hS on a plot such

as Fig. 2d, depending on the ratios of the surface energies to

the interfacial energy. Conversely, decreasing the interfa-

cial energy increases the interfacial area, causing the

particle to become more spherical, with the angles adjusting

accordingly. In the limiting case where the interfacial

energy approaches zero and the L and S phases have equal

surface energies and phase fractions, the two-phase particle

becomes spherical. This result is plotted in Fig. 3.

Effect of phase fraction

Figures 4a–d show the effect of the phase fraction on the

equilibrium particle shape. In this calculation, the free

energies of the L and S phases were taken as A = B =

1850 mJ/m2 and the interfacial energy C = 300 mJ/m2.
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Fig. 2 (a–c) Equilibrium

particle shapes calculated as a

function of the interfacial

energy for a constant phase

fraction ratio g = 0.4, and (d)

graph of the contact angles for

these and other particles over

the range of interfacial energy

from 400 to 3500. Solid line is

for hV, dotted line is for hL and

dashed-dotted line is for hS. All

are calculated at the same

values of the volume fraction. A

and B are the surface energies

for the L and S phases,

respectively
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Figures 4a–c present only a few of the possibilities to

illustrate typical behavior of the particle shape as a func-

tion of the phase fraction ratio g = 0.05, 0.4 and 0.8. The

change in particle shape is clearly recognizable in this

figure. Figure 4d shows a graph of the contact angles for

these particles over the range of phase fraction ratio from

0.05 to 0.9. Note that hS steadily increases with increasing

fraction of phase S over the range shown, while hL steadily

decreases and hV gradually increases over the same range

of phase fraction S. The behavior of the angles versus

phase fraction in Fig. 4d is distinctly different from the

behavior versus the interfacial energy shown in Fig. 2d. If

there was no dependence of the dihedral angles on the

phase fractions, the graph in Fig. 4d would consist of three

horizontal lines with the values of hS, hL and hV determined

from the values of the surface and interfacial energies only.

Effect of a high value of the interfacial energy

In contrast to the previous case (Fig. 4), where the inter-

facial energy was 300 mJ/m2, the interfacial energy was

increased to 3000 mJ/m2 with the surface energies of the S

and L phases held constant at 1850 mJ/m2 in Fig. 5. A

value of 3000 mJ/m2 is thus nearly equal to the sum of the

surface energies of the L and S phases and is thus, the

maximum value one can expect for the interface [5].

Increasing the interfacial energy causes a dramatic change

      0                 10                20                30

-10

0

10

G=0.4

0                   10                  20                 30
-15

-10

-5

-0

5

10

15
G=0.05

0              10             20             30             40

-10

0

10

G=0.8

50

100

150

sel
g

na lar
de

hi
D

θV

θS

θL

0.0  0.1 0.2  0.3 0.4 0.5 0.6 0.7  0.8 0.9

Volume Fraction

Fig. 4 (a)–(c) Equilibrium

particle shapes calculated as a

function of the volume fraction

G, and (d) graph of the contact

angles for these and other

particles over the range of

volume fraction from 0.05 to

0.9. All are calculated at the

same values of surface and

interfacial energies. The particle

diameter is in nanometers
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Fig. 3 The interface of equilibrium two-phase particle calculated for

the same volume fraction, surface energies A = B = 1850 with

interfacial energy C as low as 1
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in the particle shape as well as the dihedral angles. This is

seen in Fig. 5, where the two phases almost tend to exist as

two separate spheres.

Figure 6 shows additional plots of the variation in

dihedral angles with phase fraction for an interfacial energy

of 3000 mJ/m2, with the curves for hS and hL now lying

substantially above that for hV. This behavior occurs

because the high value of c LS produces a deep cusp at the

tri-junction, thereby decreasing hV considerably, and cor-

respondingly increasing both hS and hL.

When Fig. 4d is compared to Fig. 6, it is seen that

decreasing the L–S interfacial energy causes the curves for

hS and hL to move apart and change in an almost

complementary manner with phase fraction, while hV

remains nearly constant over the range of phase fraction

ratio g from 0.1 to 0.9. This behavior is caused by the weak

influence of the L–S interface on the resulting dihedral

angles and nearly spherical shape of the two-phase

particles.

Discussion

The equilibrium calculations demonstrate that the dihedral

angles at a three-phase junction vary with the volume

fraction of the phases for spherical two-phase particles,

when one interface (in this case the L–S interface) is cusp-

oriented. In the absence of a cusp-oriented interface, the

dihedral angles of a tri-junction are uniquely determined if

the tri-junction is in thermodynamic equilibrium. If the

surface and interfacial energy densities are independent of

the normal, the various isotropic surfaces will possess

constant, but different, curvatures at equilibrium, depend-

ing on the relative amounts of the phases present.

When one interface becomes cusp-oriented, there exists

only one equilibrium condition at the tri-junction and a

degree of freedom is introduced in the selection of the

dihedral angles. Since the shape of the surfaces depends on

the relative amounts of the phases [14], it is to be expected

that the dihedral angles will also show a dependence on the

phase fraction. A similar dependence of two of the dihedral

angles on phase fraction should also exist when there are

two cusp-oriented interfaces present in the tri-junction. In

this case, there are no surfaces or interfaces that are par-

allel, the orientation is fixed only for the L–S interface, and

the values of the dihedral angles hL, hS and hV all depend

on the phase fraction. The surfaces of both the L and S

phases change orientation as the phase fractions change.

The two undetermined angles provide a degree of freedom

that must be solved simultaneously with the equilibrium

conditions for the surfaces, again yielding a dependence of

the two dihedral angles on the phase fraction.

In the case of solid phases, area fractions of phases

measured experimentally may not be those of perfectly

spherical particles due to faceting (see e.g., [6]). This dif-

ference can introduce some error between experimental

measurements and calculations based on perfect spheres,

i.e., assuming isotropic surface energies, but the qualitative

behavior does not change. The situation of one cusp-ori-

ented interface may be important in grain growth, where

one grain-boundary may be cusp-oriented, e.g., containing

a {111} plane or {111} twin boundary [7, 9, 12, 13]. In this

case, the curvature and mobility of this grain boundary may

be markedly different from the other grain boundaries at

the tri-junction, which can change their dihedral angles,

thereby facilitating grain boundary motion.
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Fig. 5 Equilibrium two-phase particles shape calculated for the

same surface energy of 1850 mJ/m2, a large interfacial energy of

3000 mJ/m2, and a volume fraction ratio of 0.05. The X and Y

dimensions are in nanometers
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the same surface energies and interfacial energies of 3000 mJ/m2
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The present case is different than the classic ‘sessile

drop’ experiment [2–5] with a liquid (or solid) droplet on a

semi-infinite solid surface. In this case, the L–S. and S–V

interfaces are the same and parallel. The angle hL does not

vary with fraction of phase L, but the drop simply increases

its size. In this case, there is no phase fraction dependence

and the classic force balances discussed in references [1–5]

apply.

The behavior described herein was for two metallic

phases in equilibrium with their vapor, but similar behavior

is expected to occur for other combinations of materials

and states of matter, as evidenced by the example of grain

boundaries mentioned above. Certain factors such as a

strong orientation dependence of the surface and interfacial

energies, i.e., anisotropy, may change the actual equilib-

rium angles quantitatively, but the same qualitative

dependence on the phase fraction of material is anticipated.

It is worth mentioning than, interface facet could

develop neighboring orientations in a real, unconstrained

system [15], which is not considered in the present paper.

The calculation of the interfacial Wulff shape being a

cylinder, with its facet oriented in the Y direction,

accordingly, calculating the limit of applicability of our

model and characterizing the ‘‘bent-interface’’ solutions are

in progress.

Conclusions

The computational calculations in this study support the

following conclusions:

1. The dihedral angles at the three-phase junction formed

by two surfaces and a cusp-oriented interface are

functions of the phase fraction.

2. Low values of the interfacial energy causes the

dihedral angles hS and hL to move apart and change

in an almost complementary manner with phase

fraction ratio, with hV remaining above hS and hL

and nearly constant over the range of phase fraction. In

contrast, a high value of the interfacial energy causes

the dihedral angles, with the curves for hS and hL, to lie

substantially above that for hV.

3. The relative ratio of the interfacial energy to the

surface energies for two-phase particles can be

estimated from the degree of puckering at the tri-

junction. The dependence of the tri-junction angles on

phase fraction allows the ratios of the surface and

interfacial energy densities to be determined experi-

mentally using the tri-junction equilibrium conditions.
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